From Components to Decisions: The Role of Software
Engineering and Frameworks in Catchment Decision
Support

R. M. Argent’, R. A. Vertessy”, J. Rahman', 8. Seaton”

“ Centre for Environmental Applied Hydrology and Cooperative Research Centre for Catchment Hydrology,
Department of Civil and Environmental Engineering, The University of Melbourne, 3010, Australia,
(RArgent@unimelb.edu.au)

& Cooperative Research Centre for Catchment Hydrology, CSIRO Land and Water, Canberra

Abstract: Good simulation modelling demands the taiforing of models to problems. Such tailoring is greatly
aided by the re-use of model componeats (modules), which, in turn, is supposted by modern software
engincering practices. While scientisis working in catchment modelling have been early adopters and
continual users of computer-based models, many modeis have been, and continue to be, developed without
taking advantage of modern software engineering techriques. Adoption of good modelling practices can
reduce module development and debugging time, simplify model construction and maintenance, improve
communication of model details, facilirate simulation result comparisons and analysis, and greatly aid many
aspects of modelling for decision support. Improvements in decision support arise not only from higher
quality, more flexible and more robust tailored products, but aiso from the increased time made available for
involvement of, and communication with, decision makers. Modelting frameworks form 2z keystone in
adoption of good modelling practice, by providing an enabling environment within which developers have
access to many tools that support the modelling task. Core simulation modeiling components are supported in
a framework by suites of service modules, such as data handling and generation, output management,
comparison, analysis and visualisation tools. Other benefits of frameworks inciude a common software
operational paradigm and consistent delivery approach to decision makers. This paper showcases many of
the software engineering technigues that are relevant to the component-based modelling approaches being
adopted in ecological and bio-physical simuiation modelling, and which have been included in a catchment
prediction medelling framework being developed by the Ceoperative Research Centre for Catchment
Hydrology. This framework forms a basis for integration of existing models and newly developed models
into a catchment prediction toolkit that aims to service some of the decision support modelling requirements
of the catchment management industry.

Keywords: Component-based modelling; Modelling trameworks; Good modelling practice

i. INTRODUCTION More than a decade ago, Laut and Taplin [19389]

While hydrologists have been early adopters and remarked:

continual users of computer based models, many
models have been developed prior to widespread
use of proven software engineering principies.
Even today, new developments often fail to take
advantage of the improvements to software quality
available through the adoption of modern software
engineering techniques. With an increasing focus
on integrated environmental modelling, the use of
sound software engineering practices becomes -
even more important. p22]

Perhaps the most serious problem in
model development for catchment
management in the near future is that of
integraring present-day single purpose
models to encompass the variety of land
resowrce types and land wses in a medium
to large catchment, with the purpose of
defining the consequences of land use
change on stream flow and water quality.

1589

This remark has been echoed over the years as
integrated environmental management has
developed, and the use of modelling to support
environmental decision making has expanded
[Argent et al., 1999; Born and Sonzogni, 1995;
Cairns Jr. and Crawford, 199%; Margerum and
Born, 1995; Mitchell and Hollick, 1993].

Three issues that are often raised in the area of
decision making using integrated environmental
modelling tocls are those of conceptual
incommensurability, scaling of temporal and
spatial model representations, and software
support. One of the aims of the tesearch reported
here is to improve model development practices
by encouraging and supporting the use of sound
software engineering principles, Adoption of
these practices will allow modellers 10 quickly
develop models that are both powerful and
flexibie as well as being easy o communicate and
maintain. In the long run, this will result in
improved support of decision making through
removal of modelling sticking points, improved
communication of models and provision of more
tflexible modelling applications.

One of the challenges to changing practice in
environmental modelling is to sort out those
practices that were developed in computer
science, and adopted in business enterprise
development, that are actually useful, practical
and relevant. The following sections caver some
approaches and techniques that demand
consideration.

2. TECHNIQUES FOR IMPROVED
MODEL DEVELOPMENT PRACTICE

The technigues that follow can improve the model
development process and the quality of maodeliing
applications as a whole. Each technique is largely
independent, allowing developers to adopt
techniques over time. The techniques include
process improvements, sofiware engineering
principies, and specific tools.

2.1 Communication of Models

When we write models, we expect to be
communicating details of the model to various
groups. We communicate the scientific details
and assumptions to our peers and clients, data
requirements to our users, and software structure
to programmers and researchers.

These communications often take the form of
written documentation, such as journal articles,
manuals, emails, code comments and software
structure diagrams. These documents are helpful
at different times in 2 modelling project and focus
on different groups of people,

A major problem with documentation is the time
taken to produce it before, during or after mode!
development. This discourages the production
and maintenance of documentation, which in turn
leads to inconsistency between maodel and
documentation. Ewven when documentation is
present, it usually isn’t available in different forms
to suit the different groups. For example, a
programmer employed to make modifications to a
mocel, would benefit greatly from written and
diagrammatic documentation of the software
structure, but may have to rely solely on journal
articles that describe the scientific approach of the
model.

Thus, improved documentation of models, with
the various uses in mind, should be done. At a
minimum, algerithms should be listed and
described, and user manuals and context sensitive
help must be used.

Improved model communication requires easier
methods for creating and raintaining model
documentation. Automated documentation tools,
such as JavaDOC and DOC++, utilise the source
code of a model, allowing the quick creation and
modification of documents. There is a range of
automatic documentation tools available, largely
supporting object and class based modeiling
approaches. By using automatic tools we can
ensure consistency between modei and
documentation, match standards dictated by an
orgamisation, and always have documentation
available.

2.2 Metadata

An extension of good model documentation is the
appropriate use of metadata. Adopting a metadata
strategy for all modelling within an organisation is
an approach that can pay considerable dividends.
By developing models that insist on appropriate
metadata, and incorporating metadata into
modelling results, a modelling history is created.

Metadata describes properties of the data (such as
its name, author or license) that places the data in
a context and assists in its interpretation. The
attributes that constitute “useful metadata” vary
between industries and even between projects.
Commonly used fields for environmental metadata
inciude location, quality, size, and how the data
were created and collected.

Metadata is an area where something is better than
nothing, While the amount of information, and
the way information is siructured, varies between
metadata schemes, consistency is the key.
Consistent metadata improves the guality of data
assessments and reduces interpretation time.
More information supports powerful data mining

1590

but becomes a hindrance when the information is
not available consistently across a data resource.
A consistent style wilt involve creating metadata
that has the same essential set of atiributes for
each dataset. This set of attributes may be as
simple as:

s Dataset Name:
e Variable Description:
& Units:

o Creation Date:

File Name:

¢ Location of File:

s Comments:

L]

As long as the base set of attributes is consistent, |

the metadata will remain usable. Current
metadata standards and guidelines, such as the
Content Standard for Digital Geospatial Metadata
(CSDGM) and the Australian and New Zealand
Land and Information Council {ANZLIC)
Guidelines on Core Metadata Elements, provide
useful examples. Adopting a simple scheme can
be the first step towards effective management of
data resources and providing a history of
modelling etforts.

2.3 Use and Abuse of Constants

One problem in re-using software is associated
with "hard wiring" of constants in models. By
carefully considering the nature of all constants
used in a model, and managing constants
appropriately, it is possible to vastly increase the
flexibility and re-usability of software.

If you expect your modelling to be successfui,
expect it to be reused. If you expect it to be
reused, then efforts should be made to make it
flexible. Models tend to be developed to suit a
particular modelling exercise, which often
involves constants inctuding time-steps, grid
spacings and geographic locations, Successful
modelling exercises often lead to models being
applied in different situations, where the same
constants may not apply. Adapting a model to a
new situation, where the previous set of constants
is embedded in the code, can be time consuming
and error prone. The modifications create a fork
in the model development, where the two versions
of the medel proceed in different and possibly
incompatible directions. If a bug is fixed in one
version of the source code, it is unlikely to be
fixed in the other, unless sound version control
and software management is in place. The
model’s code may be written based on
assumptions about the acceptable values of the
constant parameters. When these assumptions are
made, but not weli documented, they make
applying the model in new situations difficult.

1591

A good starting point is to think of everything as a
parameter and, therefore, subject to change. This
can include various artefacts of the software
process, such as loop increments. For anything
that is considered a constant. decide whether it
should be categorised as a true constani, a project
constant or a simple constant. True constants wiil
never change, so that a value can be used for
every conceivable location on Earth, at any
reasonable time in history, for any valid scenaric,
When you have a true constant, define it as a
constant within the source code, and use the
constant name in subsequent code.

Project constants car be thought of as constants
that are applicable for most of the current likely
applications of the software, while simple
constants are those that are likely fo remain
constant for a given application run.

Initialisation (INI) files store parameters and
options for programs that need the flexibility to
change, but are unlikely to change on a regular
basis. Thus, project constants should be stored in
INT files, while simple constants should be used in
parameter files that are accessed for particular
RS,

3. COMPONENT BASED MODELLING

Component Based Software Engineering (CBSE)
is an approach fo software construction that
emphasises viewing a system as a collection of
interchangeable, and largely independent,
components. The components can be designed
specifically for an application, reused from a
previous effort, or purchased from a component
vendor. The advantages of keeping a model’s
core scientific algorithms separate from the
support code include improved maintainability,
easier communication and an easier path to
integration in modelling frameworks.

CBSE is typically supported by a component
standard, such as Microsoft’s Component Object
Model (COM) or Sun Microsystems’s Enterprise
Java Beans (EIB), that defines certain minimum
standards with which components shousld comply.
These minimum standards allow the comporent
standard to provide infrastructure for managing
components, such as creating instances of
components and making components availabie
over the network,

3.1 Environmental Modelling with
Components

There are numercus areas where CBSE can be
applied in environmental modelling efforts.
Initially, commercial off-the-shelf components can
be used to handle visualisation and user interface

tasks within a modelling application. This
approach has been taken, for example, in the
Model for Urban Stormwater Improvement
Conceptualisation (MUSIC), developed by the
Cooperative Research Centre for Catchment
Hydrology. where a graphing component is used
to display time series data and a diagramming
component is used to interactively design a
stormwater treatment system. The next step is to0
implement a model’s core scientific code as a
compenent, or collection of components that can
be supported by a modelling framework that
provides model integration capabilities.

3.2 Using and Combining Components

Components are typically used as objects in an
object-oriented programming language, such as
C++. Components, like objects, support an
interface that contains operations thai can be
performed, queries that can be answered and
properties that can be changed. Client code is
written to make use of these interfaces to perform
required component functions.

Visual components, such as charts and buttons,
are typically arranged on a window using a user
interface design tool, such as Visual Basic or
Borland Delphi. Code can then be added to the
window tc control the behaviowr of the
component, such as providing the chart with data
or specifying an action to be performed when the
user clicks on the button.

3.3 Imterchanging Components

When a component needs to be exchanged with
another, such as switching between two different
rainfati-runoff models, there are a number of
possible approaches in a component based system.
Many component based systems support
interchanging components that share a common
interface. This approach is similar to the object
oriented notion of inheritance, with the common
interface being synonymous with a common
parent class.

Interactive component based modelling systems,
such as the Integrated Catchment Modelling
System (ICMS), allow components to be
interchanged using a graphical display [Reed et al.
1999]. Here the two components may not share
the same formal interface, but still have similar
enough elements that a human operator can
resolve the differences.

3.4 Design and Use of Components

In designing components, there are technigues
available that improve the ability to detect and fix

1592

programming bugs. These approaches, such as
Design By Contract {Hunt and Thomas, 20001, set
up the specification for the interaction of variables
within components, and ensure that if an incorrect
variable type is passed to or from a routine, that
the error is picked up, and the source identified.

Collectively, the techniques described in the
preceding sections can be used fo improve the
quality of environmental modelling software.
This, in turn, can lead to improvements in the
scientific process of model development. First,
and foremost, by reducing the time it takes to
maintain and debug models, we free more time for
developing the science. Improving the
communication of model details makes it easier to
share developments with peers and have them
advance the work. Finally, improved maintenance
and communication collectively lead to lower
defect rates in the software, giving a better end
product and reduced software costs.

Software design techniques that recognise the
need for the software to remain adaptable allow
the model to change and grow over its lHifetime,
We suggest the use of modelling frameworks to
improve productivity by relying on a framework’s
built in data management and input-output
routines.

4. MODELLING FREAMEWORKS

While component standards, such as COM or
EJB, and programming languages, such as Java,
provide support for creating and connecting
software components, they provide little other
infrastructure. Frameworks can be built with, and
on top of, a component standard or programming
language in order to provide additional services
and infrastructure useful 1o a particular class of
applications. Frameworks typically impose
additional constraints on the way m which
compoenents can interact, in order to provide high-
level management functions to developers.
Environmental modelling frameworks typically
include infrastructure for managing data and the
use of data within the system, models and the
integration of models and visualisation of model
resuits. This functionality can be written once, by
the framework developers, and used repeatediy by
model developers.

Typically, the more support and infrastructure
offered by a framework, the narrower the class of
applications that can be adequately supported by
the framework. For example, an application
framework may contain user interface concepts,
such as buttons and entry fields useful io any
graphical application. This functionality can be

used to support the development of modelling
applications, web browsers or word processors.

An important consideration in selecting or
developing a modelling framework 15 to ensure
that the framework provides a strong level of
support for your class of apptlications, without
imposing too much in terms of developmental
overhead or model operation. Il a framework
imposes a considerable overhead, then developers
used to working in a particular way will not adopt
it. A straight-facket framework unduly dictates
the way models operate, reducing the opportunity
for developers to implement elegant software
solutions,

Alongside issues such as consistency and
component re-use, the adoption of framework-
based component modeliing also has long term
software maintenance advantages. Maintainable
software will have a longer useful life with a
lower total cost of ownership. The software
engineering industry has developed technigues for
designing and structuring software to improve
maintainability. Techniques for improving
communication of software details also work to
improve the maintainability as it reduces the effort
required to understand and modify the software.
Modelling frameworks encourage modularity, by
providing reusable modules for model and data
management, which in turn leads to more
maintainable structures. Careful attention to the
way constants are handled, within the modelling
application, improves the adaptability of the
model {0 new projects.

Modelling frameworks form a keystone in
adoption of good moedeliing practice, by providing
an enabling environment within which developers
have access to many tools that support the
modelling task. Team-based model building can
also be supported. Core simulation modelling
components are supported in a framework by
suites of service modules, such as data handling
and generation, output management, comparison,
model calibration, analysis and visualisation tools.
(Other benefits of frameworks inclade a commoen
software operational paradigm and consistent
delivery approach to decision makers.

4.1 Suppeort for Decision Making

Adoption of CBSE principles and practices,
particularly with the use of modelling frameworks,
also benefits environmental decision making.
Three aspects of decision support include:

s Reduced time spent on mode! development,
hence reduced cost and more timely delivery
of decision support tools;

1593

e Improved communication of model structure
and assumptions, allowing a better fit
between the model and the problem being
addressed, and

s Increased flexibility in software operation and
application, allowing models to be applied to
a wider range of problems.

Beyond these advaniages, the use of CBSE and
modelling frameworks also supports the user
based development paradigms that are a part of
modern software development approaches. These
include prototyping approaches that allow users to
interact with an application, and become familiar
with data formats and information presentation,
long before the model algorithms are finalised.

5, CONCLUSIONS

The practices discussed in this paper have been
identified as those from software engineering and

business application sciences that provide
considerable promise to assist the further
development of integrated environmental

modeiling and decision support tools. However,
software development practice is only one of the
key issues of integrated environmental modelling.
Other issues to be addressed as we go forward lie
in the areas of ‘disciplinary stiffness’ and ‘scale
mismatches’.

Disciplinary stiffness stems from the relatively
narrow knowledge base and modus-operandi of
each disciplinary group participating in catchment
prediction. There is a huge gulf in the language
and analytical tools used by social scientists,
economists, ecologists and hydrologists, so it is
not surprising that they rarely attempt to couple
their world views. Modellers are unlikely to work
with models from outside their fields unless the
most exacting standards of good modelling
practice have been adherad to in the development
of those models. As discussed earlier, these
would include rich decumentation, proper use of
constants and clear model structure. To
complicate matters further, a rich diversity of
modelling methods is employed across these
fields, ranging from conceptual and statistical,
through to probabilistic and deterministic
approaches based on the solution of partial
differential equations. Any framework seeking to
support integrated modelling across disciplines
must cater for this diversity of methods.

Scale mismalches are ancther area for continued
investigation. Catchment managers need models
that can span space scales from points and
paddocks (10%10° m% w0 whole regions (10° km®
and even up to coniinental scales. In the time

dimension, managers seck modeis that can predict
catchment function on scales ranging from
minuies to centuries. This broad space and time
domain cannot be spanned by any single model.
Instead, discrete models populate this space,
cccasionally overlapping in their range.
Notwithstanding the difficulties of coping with
this range, problems arise because the spatial and
temporal units that hydrologists specify in their
models may differ markedly from those employed
by ecologists or economists. Even within the
hydrology domain, coping with the spatial and
temporal scale mismatches of different catchment
processes has been a major impediment to
integration.

If we take for example the integration of sediment
and nutrient generation models with salinisation
meodels, one is confronted by the need to have two
very different levels of spatial and temporal
resolution. Most sediment and nutrient generation
and movement takes place during storm events,
and the vast bulk of this occurs during short bursts
of high intensity rainfall. Furthermore, the fate of
mobilised material depends strongly on the
topography, degree of conneciedness between
hillslopes and streams and the nature of the land
cover, particularty in the riparian zone. Models of
this process thus require comparatively fine
temporal and spatial resofution. On the other
hand, salinisation is a very slow process that takes
place over decades or centuries. Whilst
opography is alse an important variable,
salinisation models can cope with much coarser
topography information than models of sediment
and nutrient movement.

The ‘brute-force’ solution to the scale mismalch
problem is to have integrated models operate on
the minimum temporal and spatial scale. Such an
approach is highly inefficient and unparsimonious.
A more sensible way forward is to provide a set of
scaling procedures that can be used (o adapt
particular space and time efements in models for
various processes. Any framework designed to
support integrated modelling should contain
within it, scaling procedures to aggregate and
disaggregate spatial and temporal data.

By working on the issues discussed here, and
adopting some of the elements of good software
engineering in our modelling practice we can
continue to develop our ability 1o support well-
informed environmental management.

6. ACKENOWLEDGEMENTS
This research is supported by the Cooperative
Research Centre for Catchment Hydrology.

7. REFERENCES

Argent, RM., R.B. Grayson and $S.A. Ewing,
Integrated models for environmental
management: [ssues of process and design
Environment Inrermational, 25(6/7): 693-699,
1999,

Born, SM. and W.C. Sonzogni, Integrated
environmental management: strengthening the
conceptualization. Environmental

Management, 19{2); 167-181, 1995,

Cairns Jr., I. and T.V. Crawford, Iategrated
Environmental Management, Lewis, Chelsea,
1991,

Hunt, A, and D. Thomas, The Pragmatic
Prograruner: From Journeyman to Master,
Addison Wesley, 352 pp., 2000.

Laut, P. and B.J. Taplin, Catchment Management
in Australia in the [980s. CSTRO Division of
Water Resources, Divisional Report 89/3,
252pp., 1989,

Margerum, R.D. and S.M. Born, Integraied
environmental management: moving from
theory to practice. Journal of Environmental
Planning and Management, 38(3): 371-391,
1995,

Miichell, B. and M. Hollick, Integrated catchment
managerment in Western Australia: Transition

from concept to implementation.
Environmental Management, 17(6): 735-743.
1993,

Reed, M., SM. Cuddy, and AE. Rizzoli, A
framework for modelling multiple resource
management issues - an open modelling
approach, Environmental Modelling and
Saftware, 14, 503-509, 1999,

1594

